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Abstract. Refurbished products are gaining importance in many 

industrial sectors, specifically high-value products whose residual value 

is relevant and guarantee the economic viability of the remanufacturing 

at an industrial level, e.g., turbine blades for power generation. In this 

paper we address the scheduling of re-manufacturing activities for 

turbine blades. Parts entering the process may have very different wear 

state or presence of defects. Thus, the repair process is affected by a 

significant degree of uncertainty. 

To cope with this, the proposed approach pursues robust schedules 

minimizing the risk associated to a timely completion time. An 

approximate branch and bound algorithm is developed grounding on the 

estimation of the lower bound of the makespan. The viability and 

efficiency of the approach is assessed through computational 

experiments grounding on the industrial case under study and a 

comparison is operated among alternative scheduling approaches. 

Keywords: Remanufacturing, Scheduling under uncertainty, Risk, 

Branch and bound. 

 

 

 

 

 

 

 

 

 

 



2 

 

1 Introduction 

Remanufacturing can be defined as "the rebuilding of a product to specifications of the 

original manufactured product using a combination of reused, repaired and new parts" 

[1]. Remanufacturing is a form of product recovery process entailing the repair or 

replacement of worn out components to obtain remanufactured products with the same 

customer expectations as new products. 

The industrial viability of remanufacturing processes is specifically relevant for 

high-value products whose residual value is high [2, 3]. An example are turbine blades 

for power generation, whose individual price is close to a middle-class car, i.e. 10,000 

euros, with F-class turbine engines needing about 400 blades for the different stages. 

While turbine blades are subjected to a very strenuous environment inside a gas turbine, 

such as high temperatures, stresses, and vibration, leading to blade failures, potentially 

destroying the engine, even though turbine blades are carefully designed to resist these 

conditions. The first stage of a gas turbine faces temperatures around 1370 °C, that can 

weaken the blades and make them more susceptible to creep and corrosion failures [4].  

High stress from centrifugal force and fluid forces that can cause fracture, yielding, or 

creep failures of blades while vibrations can entail fatigue failures. The 

remanufacturing of turbine blades is a growing market in recent years, due to its 

potential to reduce cost and achieve sustainable production. 

Nevertheless, planning and scheduling remanufacturing processes is more complex 

and difficult than traditional manufacturing due to uncertain factors. The complicating 

characteristics of remanufacturing environment are summarized in [2] in terms of the 

following aspects: uncertainty in the timing and the quantity of returns, balancing 

returns with demands, disassembly, uncertainty in materials recovered, reverse 

logistics, materials matching requirements, routing uncertainty and processing time 

uncertainty. Given the above-mentioned complexity and uncertainty, it is important for 

production managers to make effective production decisions [5]. 

In this paper, we address the scheduling of a portion of the remanufacturing process 

for turbine blades modelled as a two-machine permutation flow shop scheduling 

problem with stochastic processing times. The aim is at devising robust schedules to 

mitigate the impact of unfavourable scenarios. To this aim the objective function to 

minimize is the value-at-risk of the makespan, a measure of risk commonly used in the 

financial area [6, 7]. This class of risk measures (value-at-risk or conditional value-at-

risk) are useful tools to find a trade-off between the expected performance while 

mitigating the impact of adverse events that may lead to poor performance of the 

objective function.  

An approximate branch-and-bound approach is designed and implemented, 

exploiting bounding criteria for the objective function under study. A testing is 

provided on a set of instances generated according to parameters matching the main 

characteristics of the real industrial problem. 
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2 State of art 

Production planning and scheduling in a remanufacturing environment can be way 

more complicated than in traditional manufacturing environments since processing 

routes and times may depend on the condition of the returned products. Research in the 

scheduling of remanufacturing environment has identified the combinations of finite 

capacity, part commonality and stochastic parameters as essential elements [8]. 

Variable processing times has been also labelled as the main source of uncertainty 

in remanufacturing environments [9]. The focus of this paper is on the very common 

class of two-machine flow-shop scheduling problems [10]. Nevertheless, the stochastic 

version of this problem, with processing times modelled in terms of stochastic 

distributions, has been much less studied than its deterministic counterpart, due to its 

complexity [11].  

Most of the existing literature on the stochastic two-machine flow shop scheduling 

problem to minimize the makespan focus on minimizing its expected value, which can 

be denoted as F2|prmu|E(Cmax). Gourgand et al. [12] review the majority of the 

revised works on stochastic two machines flow shop scheduling problems and they 

pointed that the stochastic two machine flow shop scheduling problems with specific 

features has been extensively studied. For example, for the processing times with 

exponential distribution and expected makespan minimization as the objective 

function, Talwar’s rule is proposed [13] and it has been proved to be optimal [14]. For 

the case in which processing times of each job on machine 1 and machine 2 follow the 

same distribution, a dispatching rule to minimize the expected makespan is given [15], 

and three heuristic solutions are proposed based both on Talwar’s rule and Johnson’s 

rule [16]. 

Besides the expected makespan criterion, the absolute deviation robust scheduling 

problem of a two-machine flow shop, which can be denoted as F2|prmu|R(Cmax), was 

also considered [17]. In this study, they present a measure of schedule robustness that 

considers the poorest system performance over all potential realizations of job 

processing times and discuss two frameworks for structuring processing time 

uncertainty which are discrete processing time scenarios and continuous processing 

time intervals. 

Despite these advances on the two-machine flow shop scheduling problems with 

processing time uncertainty, minimizing the expected makespan fails in estimating the 

quality of the schedule in a stochastic point of view [18], the absolute deviation robust 

approach pays too much importance on particularly worst-case scenario, which in 

reality, may be unlikely to occur, therefore, using this approach tends to be too 

conservative. Considering the limitations of E(Cmax)  and R(Cmax)criterion, in this 

paper, we propose a performance evaluation criterion based on a risk measure, the 

value-at-risk, defining the problem F2|prmu|VaR(Cmax) [19]. 

Risk measures have been broadly used in the financial area such as the portfolio 

management field to hedge against uncertainties and deal with extreme scenarios, but 

they are rarely addressed in manufacturing scheduling field, and most of the existing 

literature apply the risk measure approach to the single machine scheduling [20], make 

to order production [21, 22, 23] and assembly line scheduling [24]. Tolio et al. [25] 
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propose a branch and bound method to solve a single resource scheduling problem in a 

hard metal tools production environment aiming at minimizing the risk of maximum 

tardiness. Sarin et al. [26] formulate a scenario-based mixed-integer program 

formulation for minimizing conditional value-at-risk for the single machine and parallel 

machine scheduling problem with total weighted tardiness objective function. Atakan 

et al. [27] address a single machine scheduling problem aims at minimizing the value-

at-risk of the total tardiness and the total weighted tardiness. Chang et al. [28] present 

a robust optimization model for the single machine scheduling problem with random 

job processing time with mean and covariance information to find an optimal schedule 

by minimizing the conditional value-at-risk of total flow time. Urgo et al. [19] apply a 

branch‐and‐bound approach for the stochastic single machine scheduling problem with 

uncertain processing time and release time aims at minimizing the value‐at‐risk of 

maximum lateness. Kasperski et al. [29] discuss a wide class of single machine 

scheduling problems with uncertain job processing times and due dates, and applied 

risk measure approaches (VaR and CVaR) to get a solution. Meloni et al. [30] evaluate 

the conditional value-at-risk of makespan for a resource constrained project scheduling 

problem in which for each activity only the interval for its integer valued duration is 

known. 

3 Problem formulation 

We consider a simplification of the whole remanufacturing process for turbine blades 

into a two-machine permutation flow shop scheduling problem. This simplification can 

be used to focus on a critical subpart of the whole process, or to be applied to an 

aggregate process considering macro-machines instead of the detailed activities. 

We consider a set of n jobs, {1, 2,...,n}, to be processed on two machines in series. 

The routing of the jobs through the shop is given and the processing time of an operation 

i of job 𝑗, 𝑝𝑖𝑗   (𝑖 = 1,2;  𝑗 = 1, . . . , 𝑛. ) is modelled as an independent stochastic variable 

with a discrete distribution. Because of stochastic processing times, the makespan is 

also a stochastic variable depending on p
ij
, as well as on scheduling decisions. The aim 

of the scheduling approach is to minimize the VaR (value-at-risk) of the makespan. The 

formulation of the scheduling problem and the associated objective function is operated 

according to the notations proposed in [31].  

A schedule decision vector x defines the positions of the jobs in the sequence while 

a vector of random variables 𝒚 = [𝑝11, … , 𝑝𝑛2] defines the stochastic processing times. 

These variables are governed by a probability measure P on Y and are independent of 

scheduling decision x . The probability distribution of the makespan, fCmax
(x, y) , 

depends on the values of x and 𝒚. And the cumulative density distribution FCmax
(𝒙, ζ ) 

can be denoted as Eq. (1). 

 𝐹𝐶𝑚𝑎𝑥
(𝒙, 𝜁 )  =  𝑃(𝐶𝑚𝑎𝑥 ≤  𝜁 | 𝒙)  =  𝑃(𝒚|f

Cmax
(x, y) ≤ 𝜁) (1) 

Given that the scheduling decision vector x is independent from the values of the 

stochastic variables in y, and Cmax is a regular scheduling objective function [32], then 
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Cmax(x, y), which is also a stochastic variable, is continuous and non-decreasing in y. 

and the value-at-risk α (VaRα) of Cmax, associated with a schedule decision x, denoted 

as ζα(𝐱), is defined according to Eq. (2). This expression can be exploited for the design 

of an algorithm looking for a schedule to minimize the value-at-risk of the makespan. 

 𝜁𝛼(𝒙)  =  𝑚𝑖𝑛(𝜁|𝐹𝐶𝑚𝑎𝑥
(𝒙, 𝜁 ) ≥ 𝛼)  (2) 

4 Solution approach 

In this section, we propose an approximate branch-and-bound approach for the 

minimization of the value-at-risk of the makespan in a stochastic two-machine flow 

shop scheduling problem. The approach includes a branching scheme and the 

estimation of proper lower and upper bounds for both partial and complete solutions. 

 

4.1 Branching scheme 

As described in Sec. 3, vector x contains schedule decisions, specifically 𝒙𝒌 denotes 

the index of the job in the k-th position of the sequence. The branching tree is defined 

starting from the root node, where no job has been sequenced. From this node (level 0), 

n branches depart, one for each job that can be the next in the sequence, pointing to n 

nodes (level 1). This scheme is repeated, at each level k (𝑘 ≤  𝑛), jobs occupying the  

k-th position in the partial sequences are defined, up to level n, where the nodes define 

a complete schedule. A node is pruned if its lower bound is higher than the incumbent 

solution. 

The described branching scheme has the advantage of being simple, although 

entailing possible disadvantages. This will be discussed when commenting the results 

of the experiments in Sec. 5.1. Alternative branching schemes, already proposed in the 

literature [33, 34] will not be used in this work but taken into consideration for future 

improvement of the approach. 

 

4.2 Approximate evaluation of a complete schedule (leaf node) 

Leaf nodes in the branching tree are associated with a complete sequencing of the n 

jobs. An approximate evaluation of the node is operated through the estimation of 

bounds for the value-at-risk 𝛼 (𝑉𝑎𝑅𝛼) of the makespan for the schedule.  

The critical path is the longest sequence of activities in a schedule, an activity on the 

critical path cannot be started until its predecessor activity is complete. In a two-

machine flow shop problem, the critical path starts from the first operation of the first 

job scheduled (on the first machine) and ends with the last operation of the last job 

scheduled (on the second machine). Inspired by [17] on the identification of the critical 

path, for a given sequence, we consider all the n possible critical paths. Hence, we can 

calculate the cumulative distribution function for each of the paths. For path k (k <= n), 

the operation on the first machine of job k (say 𝑂𝑘,1) is the last one in the critical path 

on the first machine, then the possible critical path Π𝑘 can be described as Eq. (3). 
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 𝜫𝑘 = (𝑂1,1, 𝑂2,1, . . . , 𝑂𝑘,1, 𝑂𝑘,2, 𝑂𝑘+1,2, . . . , 𝑂𝑛,2) (3) 

where 𝑂𝑗,𝑖means the operation of the j-th job in the schedule on i-th machine. 

Thus, the calculation of the Cmax for path Π𝑘is a sum of the 𝑛 + 1 operations, the 

processing time of each operation is modeled by its cumulative distribution function, 

thus the makespan Cmax which can be represented as the convolution of the processing 

times of all operations is also a stochastic variable.  

For any two subsequent operations i, j with stochastic processing times 𝑝𝑖 and 𝑝𝑗 

modeled by their cumulative distribution functions 𝐹𝑖(𝑡) = 𝑃(𝑝𝑖 ≤ 𝑡)  and 𝐹𝑗(𝑡) =

𝑃(𝑝𝑗 ≤ 𝑡) , the cumulative distribution function of the sum of the two stochastic 

processing times 𝐹𝑖+𝑗(𝑡) is the convolution of 𝐹𝑖(𝑡) and 𝐹𝑗(𝑡), and it can be represented 

in Eq. (4) and Eq. (5). 

 𝐹𝐶𝑖
(𝑡) =  𝐹𝑖(𝑡) (4) 

 𝐹𝐶𝑗
(𝑡)  =  𝐹𝐶𝑖

(𝑡)⨁𝐹𝑗(𝑡)  =  𝐹𝑖+𝑗(𝑡)  =  𝐹𝑖(𝑡)⨁𝐹𝑗(𝑡) (5) 

where 𝐶𝑖 and 𝐶𝑗 means the completion time of operation i and operation j, respectively, 

and ⊕ denotes the convolution sum operation. 

Thus, given a full path from the first operation of the first job sequenced to the second 

operation of the last job, the cumulative distribution function of its completion time is  

 𝐹𝐶𝜫
(𝑡) =  𝐹𝜫1 (𝑡)⨁𝐹𝜫2(𝑡)⨁. . . ⨁𝐹𝜫𝑛(𝑡)⨁𝐹𝜫𝑛+1 (𝑡) (6) 

where 𝚷 denotes the considered path, | 𝚷 | = n + 1, 𝚷𝑖  denotes the i-th operation in 

this path, and 𝐶𝚷 means the completion time of path 𝚷. 

For any given schedule, n possible critical paths ( 𝚷1 , 𝚷2, . . . , 𝚷𝑛 ) and their 

corresponding 𝐹𝐶𝚷
(𝑡) calculated. 

An upper and lower bound of the distribution of the makespan can be obtained by 

Eq. (7) and Eq. (8), respectively, approximating the real distribution (see Fig. 1) [35],  

 𝐹𝐶𝑚𝑎𝑥

𝑈𝐵 (𝑡) = 𝑚𝑖𝑛 {𝐹𝜫1
(𝑡), 𝐹𝜫2

(𝑡), . . . , 𝐹𝜫𝑛
(𝑡)} (7) 

 𝐹𝐶𝑚𝑎𝑥
𝐿𝐵 (𝑡) = 𝐹𝜫1

(𝑡) ⋅ 𝐹𝜫2
(𝑡) ⋅. . .⋅ 𝐹𝜫𝑛

(𝑡) (8) 

where 𝚷i denotes the i-th possible critical path we obtained as described above. 

From the upper and lower bounding distributions obtained, we can derive the 

corresponding lower and upper bound value of the VaR of the makespan (Eq. (2)).  

The estimation of the real cumulative distribution function of the makespan is way 

much difficult. In fact, it entails considering the correlation among the different possible 

paths. Its exact calculation entails complex integration procedures [36, 37], while 

approximated solutions usually rely on Monte Carlo simulation [38]. Both the 

approaches are not suitable to be embedded in a branch-and-bound algorithm due to the 

high computational effort and consequent low performances in terms of solution time. 

To address this issue, we will ground on an approximate evaluation of complete 

schedules based on the upper bound distributions described in Eq. (7), from which the 

lower bound of the VaR can be estimated. 
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Thus, during the search process of the branch-and-bound algorithm, the obtained 

lower bound will be considered as the incumbent solution. Note that this is an 

approximate evaluation of the VaR in leaf nodes and this could lead to better solutions 

to be pruned. Nevertheless, a more conservative approach using the lower bound 

distribution (Eq. (8)) and the upper bound of the VaR would entail very long solution 

times and the frequent situation of not being able to identify a solution due to the 

impossibility for the branch-and-bound algorithm to close the gap. 

To assess the impact of this approximation, in the experiment section, the distance 

between the lower bound value and upper bound value will be assessed for the proposed 

solutions, to demonstrate that the approximation is reasonable. Moreover, a Monte 

Carlo simulation is adopted to further assess the accuracy of this approximation with 

respect to the actual value of the VaR of the makespan for the obtained schedules.  

 

 

Fig. 1. Calculation of upper and lower bounds for the VaR at each node 

4.3 Evaluation of a partial schedule  

For nodes in the branching tree that are not representing a complete schedule, a lower 

bounding procedure is proposed. Grounding on the branching scheme, nodes associated 

with a partial schedule have s jobs already sequenced in the first s positions, while the 

remaining n-s jobs have to be still sequenced. Similarly to what described for leaf 

nodes, the possible s critical paths involving the already scheduled jobs are evaluated 

and an upper bound distribution of the maximum of them computed, (see Eq. (7)).  

Thus, for the sequenced jobs, we can estimate the makespan distribution with Eq. 

(9), in which j denotes the job index, 𝐿𝑗 denotes the location of job j in this schedule, S 

is the assigned job index set, 𝐶𝑘 means the makespan of scheduled jobs in the path 

whose last critical job is job k and ⊕ means the convolution sum operation.  
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 𝐹𝐶𝑘,𝑎
(𝑡) = (⊕ 𝐹(𝑗,1)(𝑡) 𝑓𝑜𝑟 𝑗 ∈  𝑆 𝑎𝑛𝑑 𝐿𝑗 <= 𝑘)  

⊕  

 (⊕ 𝐹(𝑗,2)(𝑡) 𝑓𝑜𝑟 𝑗 ∈ 𝑆 𝑎𝑛𝑑 𝐿𝑗 >= 𝑘) 

 𝑘 =  1, . . . , 𝑠  (9) 

And the upper bound distribution for the longest path can be computed by Eq. (10). 

 𝐹𝐶𝑚𝑎𝑥,𝑎
𝑈𝐵 (𝑡) = 𝑚𝑖𝑛 {𝐹𝐶1,𝑎

(𝑡), 𝐹𝐶2,𝑎
(𝑡), . . . ,  𝐹𝐶𝑘,𝑎

(𝑡)} (10) 

With respect to the unscheduled jobs, the minimum time needed to complete them 

can be computed in terms of the sum of their operations to be executed on the second 

machine, see Eq. (11). 

 𝐹𝐶𝑏
(𝑡) =⊕ 𝐹(𝑗,2)(𝑡) 𝑓𝑜𝑟 𝑗 ∈ 𝐴/𝑆 (11) 

Thus, the upper bound distribution for this node can be calculated with Eq. (12). 

 𝐹𝐶
𝑈𝐵(𝑡) = 𝐹𝐶𝑚𝑎𝑥,𝑎

𝑈𝐵 (𝑡) ⊕ 𝐹𝐶𝑏
(𝑡) (12) 

 

Grounding on this upper bound distribution (Eq. (12)), the lower bound of the VaR 

can be derived (Eq. (2)) and assigned to this node. 

5 Computational results 

The proposed branch-and-bound algorithm has been coded using C++ and taking 

advantage of the Bob++ [39] and Boost [40] libraries. To investigate its computational 

performance, a set of experiments have been designed ad executed.  All the experiments 

ran on a MacBook Pro with a 2.6 GHz Intel Core i5 and 8 GB of RAM. 

 

5.1 Generation of the test instances 

A set of instances have been generated to assess the performance of the proposed 

approach. A generation approach proposed in [17] has been used, taking into 

consideration knowledge related to the remanufacturing of the turbine blades, namely: 

a. The variability of the processing times is related to the unpredictable degree of 

wear and presence of defects. 

b. The mode of the processing time can be lower or higher than the expected value. 

This is due to the fact that, if a blade results to be too severely damaged during the 

repair process, it will be discarded. Hence, the duration of the process can be less 

than the ideal one.  
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c. Few data are usually available, due to the fact that the repair process takes months 

and remanufacturing activities have been established only in recent years. 

 

Thus, the test instances have been generated based on the following rules: 

1. the processing times of the jobs on each machine follow discrete triangular 

distributions generated by defining a lower limit value a, a mode value c and an 

upper limit value b; 

2. the lower limit value of the processing time for each job j = 1, 2,...,n on each 

machine i = 1,2 is drawn from a uniform distribution of integers on the interval 

𝑎𝑗𝑖 ∈ [10𝛽𝑖 , (10 + 40𝛼1)𝛽𝑖] , where [𝛽1 , 𝛽2] = [[1.0,1.0], [1.0,1.2], [1.2,1.0]] , 

and 𝛼1 = (1.0,0.6,0.2) 

3. the upper limit value of the processing time for each job j on machine i is randomly 

drawn from a uniform distribution of integers on the interval 𝑏𝑗𝑖 ∈ [𝑎𝑗𝑖 , 𝑎𝑗𝑖(1 +

𝛼2)], where 𝛼2 = (0.2,0.6,1) 

4. the mode value of processing time is drawn from a uniform distribution of integers 

on the interval 𝑐𝑗𝑖 ∈ [𝑎𝑗𝑖 , 𝑏𝑗𝑖] 

 

A further consideration has to be provided with respect to the dominance of the 

possible dominance of the first or second machine in the flow shop. Stochastic 

dominance is a type of comparison between random variables based on some properties 

i.e., a random variable dominates another with respect to some stochastic property [32]. 

Thus, with the aim at focusing on scheduling problems where the sequencing is not 

dominated by the performance of the first machine, the following rules have been used 

to discard instances likely to exhibit this dominance: 

a. The number of jobs whose processing time of the operation on the second machine 

is stochastically dominated (first order) by the processing time of the operation on 

the first machine must less or equal than 50% jobs. 

b. The sum of processing times of the operations on the first machine must be 

stochastically dominated (first order) by the sum of the processing times on the 

first machine. For simplicity, we can simplify this rule as follows: sum of the 

second machine operation's lower interval value (∑ 𝑎𝑗2) is larger than sum of the 

first machine operation's lower interval value (∑ 𝑎𝑗1 ), the sum of the second 

machine operation's upper interval value (∑ 𝑏𝑗2) is larger than the sum of the first 

machine operation's upper interval value (∑ 𝑏𝑗1), here a and b denotes the lower 

and upper interval value in a triangular distribution. 

 

The generated instances are used to run the optimization algorithm with different 

risk levels 𝛼  (1, 5 and 10%) and instances with n = 10, 20, 30 jobs have been 

considered. Namely, 10 instances are generated for each combination of the possible 

number of jobs n, the risk level 𝛼, and the parameters used to generate the instances 

(𝛼1, 𝛼2 and [𝛽1, 𝛽2]), for a total of 2430 instances. 

To assess the performance of the proposed approach, the following aspects have 

been analysed: 

1. The performance of the algorithm is evaluated in terms of the solution time (time 

to find the optimal solution), how it scales as the dimension of the problem 
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increases, and the accuracy of the approximation in the evaluation of leaf nodes 

evaluation. 

2. The comparison with other stochastic scheduling approaches, specifically, the 

minimization of the maximum regret. 

 

5.2 Performance of the algorithm 

The results in Table 1 show the performance of the branch and bound algorithm in 

terms of solution time, fraction of the leaf nodes visited in the evaluated nodes are 

represented as well. The average, minimum, maximum, and standard deviation are 

reported for each combination of job number and risk level. Note that the fraction of 

the evaluated nodes in the branching tree of the total number of nodes in a enumeration 

tree are all almost 0% in all the instances, which we don't present in the table.  

Considering all the instances, the algorithm is able to find the optimal solution in an 

average time of 3.798 s, ranging from a minimum value of 0.03 s to a maximum value 

of 80 s. Moreover, the average number of leaf nodes visited is about only 1.32% among 

all the evaluated nodes, which proves the efficiency of the lower bound. 

 

Table 1. Results 

Number of 

jobs 
Risk level  Mean Min Max SD 

10 1 Solution time (s) 0.0829 0.0042 0.6154 0.0795 

  % Leaf nodes 2.7 0 5.6 1.4 

 5 Solution time (s) 0.0865 0.0047 0.5782 0.0827 

  % Leaf nodes 2.7 0 13.5 1.6 

 10 Solution time (s) 0.0845 0.004 0.561 0.0806 

  % Leaf nodes 2.8 0 7.1 1.4 

20 1 Solution time (s) 1.493 0.0155 9.3982 1.4789 

  % Leaf nodes 0.9 0 5.9 0.5 

 5 Solution time (s) 1.5522 0.0162 10.1651 1.5905 

  % Leaf nodes 0.8 0 2 0.4 

 10 Solution time (s) 1.7567 0.0254 9.0531 1.4728 

  % Leaf nodes 0.8 0 3 0.4 

30 1 Solution time (s) 9.2934 0.0462 83.2805 
10.114

4 

  % Leaf nodes 0.4 0 1.3 0.2 

 5 Solution time (s) 9.6959 0.0439 50.5855 8.5714 

  % Leaf nodes 0.4 0 0.7 0.2 

 10 Solution time (s) 10.1369 0.0458 54.6699 9.1156 

  % Leaf nodes 0.4 0 0.8 0.2 
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In this algorithm, the solution time strictly depends on the number of evaluated 

nodes, Fig. 2 shows the correlation between the solution time and the number of 

evaluated nodes for instances with different number of jobs. Further, for each evaluated 

node, the convolution calculation is the most time-consuming part, Fig. 3 shows that 

the instances with larger job number will cost more time per node, this is 

straightforward since calculations with cumulative density functions having larger 

support intervals in these instances. 

 
Fig. 2 Solution time respect to the number of visited nodes 

 

 
Fig. 3 Solution time spent in each of the evaluated nodes 
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To assess the relevance of the risk level and number of jobs on the performance of 

the algorithm an analysis has been carried out using the ANOVA. The results are 

presented in Table 2, showing that instances with different number of jobs, entail 

significant differences in the solution time, while there is no statistical evidence that the 

algorithm performance is affected by the selected risk levels for the VaR. The boxplot 

of the solution time of the algorithm with respect to both the factors are presented in 

Fig. 4.  

Table 2. Two factors ANOVA results 

 F-value p-value 

Job Number 734.4  10-25 

Risk Level 0.94 0.39 

Job Number: Risk Level 0.42 0.79 

 

 

  
Fig. 4 Boxplot of solution time on two factors 

 

To validate the accuracy of the approximation on the leaf node evaluation, for all the 

instances, we collect the interval length between the lower bound VaR value and the 

upper bound VaR value of the solution schedule, and we conclude Eq. (13), this means 

the relative distance from our solution VaR value to the real best possible VaR value is 

no larger than 1%. 

 
𝑈𝐵−𝐿𝐵

𝐿𝐵
∗ 100% <=  1 % (13) 

In addition, to estimate the error caused by using the lower bound of the VaR as the 

real value, for the optimal schedules obtained while solving the test instances, Monte 

Carlo simulation has been used to estimate the actual value of the VaR. Thus, Eq. (14) 

is used to estimate the relative error, where 𝑉𝑎𝑅𝑠𝑖𝑚𝑢 is the VaR obtained thorough the 

Monte Carlo simulation, 𝑉𝑎𝑅𝐵&𝐵  is the values obtained through the approximated 

branch and bound algorithm. For all the instances solved, the relative was not larger 

than 0.6 %. 
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 𝛿 =
| 𝑉𝑎𝑅𝑠𝑖𝑚𝑢 −𝑉𝑎𝑅𝐵&𝐵|

𝑉𝑎𝑅𝐵𝐵
∗ 100%  (14) 

 

5.3 Comparison with a minimax regret approach 

To evaluate the benefits of a scheduling approach based on the VaR, an alternative 

robust scheduling approaches, minimizing the maximum regret of the makespan [17] 

has been implemented and tested on the same instances. 

For each instance, the optimal solution minimizing the maximum regret of the 

makespan (𝑠2) is obtained and compared with the scheduled obtained through the 

proposed approximate branch-and-bound approach (𝑠1) aiming at the minimization of 

the VaR. Thus, we expect the VaR of  𝑠2 to be larger or equal to the one of 𝑠1, while 

the max regret value of 𝑠1 is likely to be larger or equal than the one of 𝑠2.  

Besides these reasonable considerations, a possible way to compare the two 

schedules is calculating the probability for schedule 𝑠1  to incur in a maximum value of 

the makespan potentially higher than 𝑠2. Thus, given  𝑚𝑎𝑥1 the maximum possible 

value of the makespan for 𝑠1  and 𝑚𝑎𝑥2  the maximum possible value for 𝑠2 , the 

probability of having  𝑚𝑎𝑥1 ≥ 𝑚𝑎𝑥2 has been evaluated numerically grounding on the 

distribution of the makespan for the two schedules (Fig. 5). Grounding on these results, 

we conclude that 

 𝑃(𝑚𝑎𝑥1 ≥ 𝑚𝑎𝑥2) ≈ 0 (15) 

which means that the solution obtained with the proposed approach is not worse than 

the minimax regret approach in terms of the maximum makespan.  The detailed results 

of the experiments are not reported since almost all of the results are equal to 0. 

 

 

Fig. 5 pdf of objective function values under two approaches  
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A second comparison of the two approaches has been carried out in terms of the 

solution time. The results for 10 jobs instances for both the approaches are reported in 

Fig. 6a (solution time) Fig. 6b (solution time deviation), as well as the gap value of the 

solution time between these two approaches in Fig. 7. For more than 90% of the 

instances with 20 or 30 jobs, it was not possible to get the results in one hour under the 

minimization of the maximum regret approach, this is in line with the results in [17], 

they only give results for instances with up to 15 jobs. The comparison is done in terms 

of: 

 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑡1 − 𝑡2 (16) 

and 

 𝐺𝑎𝑝 =
𝑡1−𝑡2

𝑡2
∗ 100% (17) 

where 𝑡1  denotes the solution time obtained with the proposed approach and 𝑡2  the 

solution time of the max regret approach. 

 

 

Fig. 6 The comparison of solution time of two approaches  
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Fig. 7 Gap between the solution time of two approaches 

For about half of the 10 jobs instances and a small fraction of instances with 20 and 

30 jobs, the max regret approach has computational advantage over VaR approach, 

since the calculation of the VaR requires the estimation of the whole distribution of the 

objective function, while the minmax regret just relies on extreme values. Nevertheless, 

considering the whole picture, the VaR approach can solve the generated instances in a 

reasonable time. While the proposed selecting rule is not efficient for max regret 

approach, computational effort of this approach is highly influenced the parameter 𝛼2, 

i.e. the variability of individual job processing times, which measured by the difference 

between 𝑝𝑖𝑗 and 𝑝𝑖𝑗 [17]. 

6 Industrial application 

The proposed scheduling approach has been preliminary tested in a test case derived 

from the scheduling of remanufacturing activities for turbine blades (Fig. 8) [41, 42]. 

In this class of processes, a blade undergoes a dissembling, thus defects are removed 

by means of a machining process, a reconstruction of the original shape by adding 

material through laser welding, and rework the blade, finally they are reassembled and 

sent back to the customer. 
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Fig. 8 Examples of blades in a gas turbine 

The defect removal and laser-based additive processes are largely impacted by the 

uncertainty related to the state of the blade, thus, the processing times could vary 

according to the level of damage and the machining parameters to be used. To 

preliminary test the proposed approach, 3 sets of instances have been defined: 10 

instances for each set, with number of jobs equal to 6, 12 and 18, respectively. Based 

on historical data from the industrial plant, a discrete triangular distribution is fitted to 

the data related to the processing times. The results are reported in Table 3, showing 

that the proposed approach is able to find a solution in less than 2 seconds, even in 

instances where the number of jobs is 18. In all the experiments, the fraction of leaf 

nodes actually explored is 7% on average, thus the algorithm is able to focus the search 

on a reduced set of promising solutions. Since the average duration of the operation in 

the industrial case is about 6 days, smaller in comparison with the value used in the 

previous experiments (larger than 30 days), the support of the associated distribution is 

smaller and, thus, the time needed for convolution operations is smaller. In fact, the 

solution time for 18 jobs instances seems smaller in comparison to the experiments in 

Section 5.2. This shows that the proposed approximate algorithm provides an effective 

scheduling tool for remanufacturing activities of turbine blades. 

7 Conclusions 

In this paper, an approximate branch-and-bound algorithm been described and 

demonstrated for a two-machine flow shop stochastic scheduling problem to minimize 

the value-at-risk of the makespan. The proposed approach has a direct application in 

the scheduling of remanufacturing activities of turbine blades. The efficiency and 

advantages of this approach have been analysed in comparison with an alternative 

stochastic scheduling approach. Further research will address the exact evaluation of 

the value of the objective function in leaf nodes as well as advanced branch schemes to 

overcome possible low performance in presence of domination of the first or second 

machine. 
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Table 3. Results of the application of the industrial case 

Number of 

jobs 

Risk level  Mean Min Max SD 

6 1 Solution time (s) 0.0084 0.0073 0.011 0.0014 

  % Leaf nodes 14.35 12 18.18 1.98 

 5 Solution time (s) 0.0061 0.0049 0.0078 0.001 

  % Leaf nodes 14.9 8.69 18.51 2.85 

 10 Solution time (s) 0.0067 0.0053 0.012 0.0019 

  % Leaf nodes 14.79 8.69 17.64 2.49 

12 1 Solution time (s) 0.1135 0.0666 0.1646 0.0332 

  % Leaf nodes 4.29 2.99 5.33 0.73 

 5 Solution time (s) 0.1031 0.0565 0.1482 0.0291 

  % Leaf nodes 4.46 3.38 5.94 0.77 

 10 Solution time (s) 0.1022 0.0755 0.1511 0.0268 

  % Leaf nodes 4.95 3.01 6.15 1.06 

18 1 Solution time (s) 0.6785 0.4442 0.8396 0.1381 

  % Leaf nodes 2.7 1.65 3.78 0.62 

 5 Solution time (s) 0.6575 0.3568 0.9735 0.2459 

  % Leaf nodes 2.84 2.01 3.93 0.68 

 10 Solution time (s) 0.6634 0.2865 1.1296 0.2435 

  % Leaf nodes 3.1 2.23 3.81 0.57 
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