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1 Introduction and problem statement

Turbine blades are one of the most expensive components in gas turbines for power
generation, due to materials used and the complex manufacturing process. For this reason,
their re-manufacturing is an economically viable approach to obtain refurbished parts for
the maintenance of gas turbines. Re-manufacturing processes, differently from production
of new parts, are characterized by a considerable degree of uncertainty. With respect to
turbine blades, the repair process entails the removal of the hard coating and the damaged
parts, the addition of the missing material through an additive manufacturing processes
and their grinding. Hence, an additional material removal phase is required by means of
electrical discharge technologies, to obtain the final desired shape. Within the described
process, two of the most relevant re-manufacturing activities are the addition of materials
through a welding process and the following grinding process. Moreover, blades quite always
need to be reworked by the repetition of the same sequence of operations, thus competing
for the same resources. Blades are processed in batches, consisting of a set of blades of the
same stage of the turbine. The number of blades in each batch is not known in advance.
In fact, some of the blades in the batch could be too damaged to be repaired and must be
substituted with new ones. The processing times for each batch of blades in the different
phases, included the rework ones, also entails a certain degree of uncertainty. Blades with
a higher degree of damages requires longer processing times respect to less severe damages.
The uncertainty associated to these factors is embedded in the processing times associated
to batches of blades, described through a probability distribution.

In this paper, we focus on the scheduling of the two re-manufacturing phases described
above, i.e., welding and grinding, modeling the process through a stochastic 2-machine
permutation flow shop scheduling problem with rework. A set of jobs N , representing
batches of blades, must be processed on two machines, M1 and M2 in sequence. The
sequence of the jobs on the two machines is the same. After their processing on the second
machine, jobs will need a rework cycle on both M1 and M2 (Fig 1). Rework jobs are grouped
in an additional set N 0. The processing time of a job j 2 N [N 0 on machine Mi, denoted
as fij , is modeled as an independent random variable following a general distribution.

After the first processing, blades undergo an inspection to determine the parameters
of the rework process. The inspection is operated offline respect to the flow shop. For this
reason, in order to consider the time needed for this phase, we state that rework jobs can
be processed not earlier than 2 jobs after the corresponding original job, unless the jobs to
be processed are less than 2. To provide an example, let us consider a schedule referring
to 4 jobs [a, b, c, d] and their corresponding rework jobs [a0, b0, c0, d0]. Thus, a full repair
schedule can only be one of the following: [a, b, c, a0, d, b0, c0, d0], [a, b, c, d, a0, b0, c0, d0] and
[a, b, c, a0, b0, d, c0, d0].

The objective function considered is the minimization of the Value-at-Risk (VaR) (Urgo,
M. and Vancza, J. 2019) of the makespan, with the aim to provide a robust solution. To
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Fig. 1. Manufacturing environment

address this scheduling problem, we propose a branch and bound approach. The processing
of the jobs is modeled through a Markov chain (Kulkarni, V.G. and Adlakha, V.G. 1986),
whose time to absorption correspond to the makespan of the schedule, enabling the calcula-
tion of the VaR. To extend the approach beyond exponential processing times, phase-type
distributions are used, due to their capability to approximate general distributions (Bladt,
M. 2005).

2 Branch and bound algorithm

The branching scheme is aimed at the definition of a full schedule, containing both
original and rework jobs. A forward branching scheme is used, sequencing the jobs starting
from the beginning of the schedule. Due to the need to respect the constraints affecting
the sequencing of rework jobs, nodes in the branching tree which are in conflict with these
constraints are pruned before being evaluated.

A heuristic rule (Baker, K.R. and Trietsch, D. 2011) is exploited to obtain an initial
upper bound for the search. This schedule is obtained by arranging all the jobs according
to the decreasing order of (1/E(j1) � 1/E(j2)) with E(j1) and E(j2) being the expected
value of the processing times of job j on machines 1 and 2 respectively. If the resulting
schedule is in conflict with the constraints affecting the sequencing of rework jobs, they are
shifted towards the right until the conflicts are eliminated.

To illustrate the approach for the calculation of the VaR of a schedule, let us con-
sider an Activity on Arc (AoA) network of activities modeled as an acyclic directed graph
G = (V,A). Each arc in G represents an activity while the nodes in V represents states.
At a given time t, an activity can only be active, dormant or idle (Kulkarni, V.G. and
Adlakha, V.G. 1986). If we consider the schedule [a, b, c, a0, d, b0, c0, d0], corresponding AoA
network is reported in Fig.2. Hence, the set of states modeling the execution of the network,
constituting the support of the Continuous Time Markov Chain (CTMC), can be obtained
(Fig. 3).

a1

a2

b1 c1 a01 d1 b01 c01 d01

b2 c2 a02 d2 b02 c02 d02

Fig. 2. AoA activity network for a two-machine flow shop with rework

Starting from this, the set of states is further enriched to consider phase-type distribu-
tions. In fact, these distribution can be in turn defined through a CTMC. Thus, each of the
states in Fig. 3 represents a set of states defined by the phase type modeling the processing
times of the different activities. The infinitesimal generator of the extended CTMC can be
obtained, starting from the one associated to the states in Fig. 3, using a Kronecker alge-
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Fig. 3. States generation scheme

bra approach (Angius, A. et. al. 2021). The distribution of the time to absorption of the
described CTMC and the quantile corresponding to the V aR↵ can be obtained according
to Eq. 1,

F (t) = 1� �eTt1, ↵ = 1� �eT⇤V aR1 (1)

The described approach applies to full schedules and can support the analysis of leaf
nodes in the search tree. For the evaluation of the other nodes, let us consider a partial
schedule with s jobs already sequenced. For these jobs, an approach similar to the one
described for leaf nodes can be used, constituting the leftmost part of the network of
activities in Fig. 2. On the contrary, for the remaining n � s jobs, their processing times
on the two machines can be modeled through two activities (X1 and X2) whose processing
times are the sum of the ones of the original jobs. The AoA activity network for a partial
schedule [a, b, c, a0, . . .] is represented in Fig. 4. Grounding on this network, precedence
constraints among operations on M1 and M2 for unsequenced jobs are relaxed. Since the
VaR of the makespan is a regular objective function, relaxing constraints will provide a
lower bound for the VaR of the complete schedules derived from the partial one considered.
Thus, the approach described above can be used to generate the associated CTMC and
estimate the lower bound of the VaR (Urgo, M. and Vancza, J. 2019).

a1

a2

b1 c1 a01 X1

b2 c2 a02 X2

Fig. 4. AoA activity network for a partial schedule

3 Numerical experiments

A set of test instances has been generated considering n = 6 jobs, thus a total of 12 jobs
including the rework ones. Processing times are modeled through phase-type distributions
randomly generated by the BuTools library (Horvath, G. and Telek, M. 2016) by providing
values for the mean and number of phases. The value of the mean is randomly sampled from
three different uniform distributions with support [0,20],[30,50] and [60,80]. The number
of phases is randomly sampled between 1 and 4. Different risk levels ↵ (10 and 20%) are
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considered for the optimization. The results of the experiments are reported in Table 1 and
Fig.5, showing the performance of the branch-and-bound algorithm in terms of solution
time, number of evaluated nodes and average evaluation time per node.

Table 1. Results

Job No. Risk level (%)
Solution time(s) Evaluated nodes

Mean Min Max SD Mean Min Max SD
6 10 877.6 110.8 1383.8 404.1 12262 1627 22433 6569

20 900.9 143.6 2009.3 563.2 11442 2665 36028 9824
ALL 889.8 110.8 2009.1 480.9 11830 1627 36028 8223

Fig. 5. Performance of algorithm

Grounding on the experiments, the proposed algorithm is able to find the optimal
schedule in about 20 minutes, with 11830 nodes evaluated on average, and the average
single node evaluation time is about 0.08 seconds. According to these results, the time
to solve larger instance is likely to be rather large, future works will address the tighter
lower bounds and effective job insertion dominance rules. Nevertheless, in the considered
industrial environment, the number of jobs to schedule is in line with the one considered in
the computational experiments, thus the proposed approach is valuable for the company.
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