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Abstract
Planning and scheduling approaches in real manufacturing environ-

ments entail the need to cope with random attributes and variables to
match the characteristics of real scheduling problems where uncertain
events are frequent. Moreover, the capability of devising robust schedules,
which are less sensitive to the disruptive effects of unexpected events, is
a major request in real applications. In this paper, a branch-and-bound
approach is proposed to solve the two-machine permutation flow shop
scheduling problem with stochastic processing times. The objective is the
minimisation of the value-at-risk of the makespan, to support decision-
makers in the trade-off between the expected performance and the miti-
gation of the impact of extreme scenarios. A Markovian Activity Network
(MAN) model is adopted to estimate the distribution of the makespan and
assess the value-at-risk for both partial and complete schedules. Phase-
type distributions are used to enable general distributions for processing
times while maintaining the capability to exploit a Markovian approach.
The effectiveness and performance of the proposed approach are demon-
strated through a set of computational experiments.

Key words: Flow shop; Stochastic scheduling; Phase-type; Markovian activity
networks; Value-at-risk

1 Introduction
Production planning and control need to cope with the intrinsic uncertainty of
real manufacturing environments (Aytug et al. 2005), characterised by incom-
plete information, and unexpected events that may stem from a wide range of
sources, e.g., the duration of production activities could vary, new activities,
like rush orders or reworks, could need to be executed with a higher priority,
order cancellations, random machine breakdowns, and shortage of materials
(Allahverdi and Aydilek 2010; Alfieri et al. 2011). Special and relevant cases
are remanufacturing processes that, differently from manufacturing ones, are
characterised by considerable uncertainty due to the variable and unpredictable
wear of used parts (Liu and Urgo 2022).

Stochastic and robust scheduling approaches have been developed to support
planning and scheduling decisions, aiming at modelling uncertainties, mitigating
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the impact of uncertain events, and protecting the performance of a production
schedule (Urgo and Váncza 2019). In stochastic scheduling approaches, relevant
sources of uncertainty are modelled by defining random variables and the associ-
ated probability distributions. Different measures, such as expected makespan,
maximum regret, value-at-risk and conditional value-at-risk, are exploited to
indicate the robustness of the schedule. Among these, value-at-risk and con-
ditional value-at-risk are designed to optimise the overall performance while
avoiding the impact of extreme events that may lead to very poor performance
of the objective function (Radke et al. 2013). Using these risk measures to sup-
port the devising of a robust scheduling solution is one of the most promising
topics (Tolio et al. 2011; Alfieri et al. 2012; Urgo and Váncza 2019; Filippi et al.
2020).

However, exploiting risk measures as the optimisation criterion ( e.g., min-
imising the value-at-risk of the makespan) entails estimating the distribution
of the considered objective function, which could be difficult even for relatively
small scheduling problems (Dodin 1985, 1996). Markovian Activity Network
(MAN), which exploits a Markovian model to represent the execution of the
activities in the network as a Continuous Time Markov Chain (CTMC), is a
powerful tool to address this estimation problem (Kulkarni and Adlakha 1986)
and has been extended to model generally distributed processing times by using
phase-type distributions (Angius et al. 2021).

This paper studies the requirements for scheduling remanufacturing activi-
ties modelled as a two-machine permutation flow shop and the parts processed
in batches. Furthermore, the dimension of each batch is not known in advance
since some parts could be too damaged to be repaired and must be substituted
with new ones. Processing times also entail a certain degree of uncertainty, i.e.,
parts with a higher degree of damage require longer processing times compared
to less severe damages. The uncertainty associated with these factors is embed-
ded in the processing times for a batch of parts, described through a probability
distribution. Without loss of generality, phase-type distributions, which can
approximate general distributions, are incorporated into the Markovian Activ-
ity Network model to estimate the distribution of the objective function. To
mitigate the propagation of uncertain events throughout the production pro-
cess, an exact branch-and-bound algorithm is being proposed to minimise the
value-at-risk of the makespan.

The paper is organised as follows: Section 2 reviews relevant literature,
Section 3 describes the addressed scheduling problem and the risk measure used,
Section 4 presents the proposed branch-and-bound approach while the results
of the experiments are reported in Section 5. Section 6 provides the managerial
insights to guide decision-makers when developing robust schedules for their
manufacturing systems. Finally, Section 7 gives the final considerations and
conclusions.

2 Literature Review
Within the vast corpus of contributions related to flow shop scheduling (Johnson
1954), the stochastic version of this problem, where the processing times of the
jobs are modelled through probability distributions, has attracted significant
attention due to its relevance in relation to the characteristics of real manu-
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facturing environments. Due to the complexity of stochastic scheduling prob-
lems, most of the existing literature models the uncertainty through discrete
scenarios to support optimisation approaches based on stochastic programming
(Fathollahi-Fard et al. 2021; Gholizadeh et al. 2021). In the cases where un-
certainty is modelled through stochastic probability distributions, exponential
distributions are often used (e.g., to model processing times), resulting in sim-
plified solution approaches(Emmons and Vairaktarakis 2012). For this class of
problems, if the objective is to minimise the expected makespan, TalwarâĂŹs
rule (Talwar 1967) has been proven to be optimal (Cunningham and Dutta
1973).

Aiming at the generation of robust schedules, specific objective functions
have been proposed. The most popular is minimising the expected maximum
completion time Gourgand et al. (2000). Although able to consider the impact of
extreme scenarios, this criteria ignores the actual probability distributions linked
to uncertain parameters, resulting in possible overcautious decisions (Tolio and
Urgo 2013). To incorporate the available information on stochastic variables,
the variance of the objective function could be considered, together with the
expected value, to optimise the expectation-variance tradeoff (De et al. 1992;
Sarin et al. 2010).

Another class of robust scheduling approaches grounds on risk measures to
pursue a trade-off between the value of the objective function and the mitiga-
tion of the impact of extreme cases (Liu et al. 2019, 2021; Benmansour et al.
2012). A popular risk mitigation criterion is the minimax regret, i.e., minimis-
ing the worst-case increment in the objective function that may occur because
scheduling decisions are taken before the actual realisation of uncertainty (Sav-
age 1951; Averbakh and Berman 1997; Xu et al. 2013; Levorato et al. 2022).
Kouvelis et al. (2000) and Kasperski et al. (2012) address the minimisation of
the maximum regret for a two-machine flow shop, grounding on the assessment
of the worst performance over all the potential realisations of the processing
times of the jobs. The uncertainty affecting the processing times is modelled
through two frameworks, one considering discrete scenarios and the other based
on continuous processing time intervals.

Nevertheless, the accurate modelling of uncertainty through a discrete set of
scenarios requires an extremely high number of them, making the problem diffi-
cult to tackle. At the same time, exponential distribution also have limitations,
since they they are not suitable to represent the variability of real manufacturing
processes. Referring to the possible optimisation criteria to pursue robustness,
besides the minimisation of the expected makespan, that fails in capturing the
actual impact of uncertainty (Tolio and Urgo 2013), also the minimisation of
the variance does not match the requirements, because it indiscriminately pe-
nalises both positive and negative deviations from the mean value (Sarin et al.
2014; Meloni and Pranzo 2020). Hence, this criterion is inappropriate when
the goal is to hedge against the makespan exceeding a certain value only, while
we do not want to penalise downward deviations (Wiesemann 2010). At the
same time, grounding scheduling decisions on worst-case scenarios, which may
be unlikely to occur, often results in excessively cautious and too conservative
decisions(Bertsimas and Sim 2004; Tetenov 2012).

To overcome the limitations of these optimisation criteria, the actual distri-
bution of the objective function must be calculated as a support to the definition
of more meaningful criteria. Different fitting approaches, e.g., mixtures of nor-
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mal distributions (Sarin et al. 2010) and phase-type distributions (OâĂŹCin-
neide 1990), have been developed to support the estimation of the distribu-
tion of some objective functions, e.g., the makepsan, without too constraining
hypotheses on the distributions of uncertain variables, e.g, processing times.
Grounding on this, one-sided risk measures, e.g., the value-at-risk (VaR), can
be used to consider the trade-off between the expected performance and the
protection against extreme scenarios. Risk measures have been broadly used in
the financial area, e.g., in portfolio management, to hedge against uncertainties
and deal with extreme scenarios, but not so widespread in the scheduling area.
Within the contributions addressing this area, the value-at-risk and conditional-
value-at-risk have been considered a valuable optimisation criterion and mostly
applied to single machine scheduling problems (Filippi et al. 2020). In this per-
spective, Sarin et al. (2014) proposed a scenario-based mixed-integer program
formulation for minimising the conditional value-at-risk for the single machine
and parallel machine scheduling problem to minimise the total weighted tardi-
ness. Atakan et al. (2017) addressed a single machine scheduling problem to
minimise the value-at-risk of the total tardiness and the total weighted tardi-
ness. Chang et al. (2017) proposed a robust optimisation model for the single
machine scheduling problem, with random job processing times, exploiting in-
formation on their mean and covariance to find an optimal schedule minimising
the conditional value-at-risk of the total flow time. A branch-and-bound ap-
proach was proposed for the stochastic single machine scheduling problem with
uncertain processing time and release time in Urgo and Váncza (2019) to min-
imise the valueâĂŘatâĂŘrisk of the maximum lateness, and for a flow shop
stochastic scheduling approach minimising the CVaR of the residual work con-
tent in Urgo (2019). Kasperski and Zieliński (2019) discussed a wide class of
single-machine scheduling problems with uncertain job processing times and due
dates and applied risk measure criteria (VaR and CVaR) to obtain an optimal
solution. Meloni and Pranzo (2020) evaluated the conditional value-at-risk of
the makespan for a resource-constrained project scheduling problem where, for
each activity, an interval for processing times is defined in the integer domain
and the evaluation of quantile- and superquantiles-based risk measures for the
interval-valued processing times in scheduling problems is addressed in Meloni
and Pranzo (2023). Several researchers also proposed heuristic approaches for
stochastic scheduling problems considering risk measures (Rezaei et al. 2020;
Villarinho et al. 2021). A summary of the available approaches for these classes
of scheduling problems is shown in Table 1, where P1 refers to single machine
scheduling problems, Pm parallel machine ones, Fm stands for flow shop schedul-
ing, and Jm denotes job shop scheduling problems. Grounding on this summary,
it emerges that no contribution exists addressing exact approaches to solve the
two-machine flow shop scheduling problem with generally distributed processing
times to minimise the value-at-risk of makespan.

The exact estimation of the distribution of the makespan in scheduling prob-
lems where the processing time of a job is described with a probability distri-
bution is recognised as a significant difficulty (Dodin 1985, 1996). Markovian
Activity Networks (MAN) have been proposed to exactly estimate this distribu-
tion, given that the processing times of the jobs follow an exponential distribu-
tion (Kulkarni and Adlakha 1986). To overcome the limitation to exponential
distributions only, extensions have been proposed to cope with generally dis-
tributed processing times (Urgo 2014). Creemers (2015, 2018) addressed the
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Table 1 Relevant studies on risk measure based stochastic scheduling.

References Objective
function Problem Uncertainty

model
Computational

technique
Solution

methodologies
Talwar (1967) E(Cmax) F2 Exp distribution Exact Dispatchng Rule

Creemers (2015) E(Cmax) RCPSP Exp and Coxian Exact Dynamic programming
Seif et al. (2020) E(Cost) Fm Discrete scenarios Exact Stochastic MIP
Sarin et al. (2010) E(Cmax) &V ar Pm/Fm/Jm Mixture normal Approximation Clark equation

Kouvelis et al. (2000) Max regret F2 Interval data Exact Branch-and-bound
Levorato et al. (2022) Maximum F2 Interval budgeted data Exact MILP
Kasperski et al. (2012) Max regret F2 Discrete scenarios Approximation Theoretical bounds
Atakan et al. (2017) VaR P1 Discrete scenarios Exact Stochastic programming

Urgo and Váncza (2019) VaR P1 Triangular Exact Branch-and-bound
Urgo (2019) CVaR Fm/no-wait Stochastic distribution Exact Branch-and-bound

Sarin et al. (2014) CVaR P1 Discrete scenarios Exact Stochastic programming
Chang et al. (2017) CVaR P1 Ambiguity set Exact MIP

Meloni and Pranzo (2020) CVaR RCPSP Interval data Approximation Theoretical bounds
Rezaei et al. (2020) CVaR RCPSP Discrete scenarios Heuristics NSGA-II/MOVDO

Kasperski and Zieliński (2019) CVaR and VaR P1 Discrete scenarios Approximation MIP
Villarinho et al. (2021) CVaR and VaR Fm Log-normal and weibull Heuristic BR-FF

Meloni and Pranzo (2023) CVaR and VaR RCPSP Interval data Approximation Theoretical bounds

resource-constrained project scheduling problem (RCPSP) using specific classes
of phase-type distributions to cope with non-exponential processing times and,
grounding on this, optimal scheduling policies were derived based on continuous-
time Markov chain models. Angius et al. (2021) proposed a general approach for
modelling the execution of a network of activities with generally distributed pro-
cessing times through a Markov chain and general phase-type distributions. All
these works leverage the capability to estimate the distribution of an objective
function (e.g., the makespan) to enable risk measures to address robustness.

This paper addresses a two-machine flow shop scheduling problem with gen-
erally distributed processing times to minimise the value-at-risk of the makespan.
To our best knowledge, grounding on Table 1, this is the first work addressing
this class of scheduling problem and objective function. Moreover, a novel op-
timisation framework is proposed based on a branch-and-bound algorithm and
the associated bounding criteria. Heuristic approaches, fundamental to coping
with larger instances, are not considered in this paper and will be the objective
for future research.

3 Problem formulation
The problem under study is a two-machine permutation flow shop where a set
of n jobs {a, b, ..., n} are processed on two machines in series. The scheduling of
the jobs is defined through a sequencing decision vector x, with x[k] containing
the indication of the job to be in the k-th position of the sequence. The decision
variables in this vector, together with the characteristics of permutation flow
shops, and hypothesising that each operation is started as soon as possible,
completely define the schedule.

A vector of independent random variables y = {p1a, ..., p2n} models the ran-
dom processing times of the jobs. These variables are governed by a phase-type
probability measure P on Y = (0,+∞), and are independent of the sequencing
decisions in x.

Due to this, also the makespan is a random variable depending on x and y.
Thus, the probability distribution of the makespan, fCmax

(x,y), depends on x
and y.



Po
st-

pri
nt

For a given schedule x, the resulting cumulative density function (cdf) for
the makespan is defined as:

FCmax(x,y, ζ) = P (fCmax(x,y) ≤ ζ|x) (1)

The objective of the scheduling approach is the minimisation of the value-
at-risk (VaR) of the makespan.

Definition 3.1. Given that Cmax is a random variable and α ∈ (0, 1) is the
desired risk level, the VaRα of Cmax is defined as,

V aRα(Cmax) = min{ζ : FCmax(x,y, ζ) ≥ 1− α} (2)

Thus, the V aRα of Cmax, associated with a schedule decision x, denoted as
ζα(x, y), is defined according to the following:

ζα(x, y) = min{ζ|FCmax(x,y, ζ) ≥ 1− α} (3)

A summary of parameters and decision variables modelling the described
scheduling problem are summarised in Table 2.

Given that the sequencing decision vector x does not depend on the values
of the stochastic variables in y, and Cmax is a regular scheduling objective func-
tion (Pinedo 2016), Cmax(x,y) is continuous and non-decreasing in y. Thus, its
value is non-decreasing when a new job is sequenced, or additional constraints
are added to the problem. For this reason, the value of the objective func-
tion (VaR) of a partial schedule is a lower bound for the objective function of
schedules containing that partial schedule (Ma and Wong 2010).

Based on these assumptions, in the next section, a branch and bound algo-
rithm is proposed to search for a schedule that minimises the value-at-risk of
the makespan.

Table 2 Parameters and variables.

Sets

j jobs, j = a, ..., n

i machines, i = 1, 2

Parameters

α risk level
pij processing time of job j on machine i
y array of processing time variables, y = {p1a, ..., p2n}

Variables

x sequencing decision array
Cmax(x,y) makespan associated to sequence x and processing times y
fCmax(x,y) probability distribution function (pdf) of the makespan
FCmax

(x,y) cumulative density function (cdf) of the makespan
ζα(x, y) V aRα of Cmax associated with sequencing decisions x
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4 Solution Approach
The minimisation of the value-at-risk of the makespan is operated through a
branch-and-bound algorithm grounding on the following building blocks:

1. Initial bound and dominance rule. Available heuristic approaches and the-
oretical results are exploited to identify an initial upper bound and possible
dominance among the candidate solutions.

2. Branching scheme and search strategy. A branching scheme is defined to
generate the nodes in the branching tree and the depth-first strategy is
exploited to support the search for the optimal solution.

3. Evaluation of the nodes. A Markovian Activity Network is generated for
each node of the tree, to estimate the distribution of the makespan. For the
nodes representing partial solutions (schedules), a lower bound is obtained.

4.1 Initial bound and dominance rule
As described in Section 2, the rule proposed in Talwar (1967) provides an op-
timal schedule in a stochastic two-machine flow shop scheduling problem with
exponentially distributed processing times and the minimisation of the expected
makespan as the objective function. Furthermore, the proposed rule can be used
as a heuristic approach for generally distributed processing times. In these cases,
the rule provides reasonable results, although not optimal, especially when the
processing time distributions of the whole set of activities are largely different
in terms of their domain and do not overlap in a great deal, i.e., distributions’
variances are small and/or means are widely not separated (Baker and Trietsch
2011). Hence, this rule is exploited to identify an initial value of the objective
function and use it as the initial incumbent solution for the branch-and-bound
algorithm (Emmons and Vairaktarakis 2012). Thus, according to Talwar (1967),
for each job j, the expected value of the processing times on the two machines
(1 and 2) is defined as E(j1) and E(j2) respectively. The initial solution can
be determined by arranging the jobs according to the following rule where the
arrow denotes a decreasing order:

S∗ =↘ (
1

E(j1)
− 1

E(j2)
) (4)

Furthermore, existing theoretical results are exploited to identify possible
dominance among the candidate solutions and reduce the solution space. Ac-
cording to (Chang and Yao 1993, Theoream 4.16-i), the following theorem
applies.

Theorem 4.1. Job j′ should precede job j in order to minimise the makespan
in the sense of stochastic ordering, if j′1 ≤lr j1 and j′2 ≥lr j2

Here j′2 ≥lr j2 denotes that the random variable j′2 is larger than j2 in the
likelihood ratio sense, i.e., P (j′2 = t)/P (j2 = t) is non-decreasing in t (t =
0, 1, 2...) (Marshall et al. 1979). Notice that stochastic ordering also implies
an ordering in terms of the value-at-risk (Bäuerle and Müller 2006). Thus,
before starting the branch-and-bound algorithm, the theorem 4.1 above is used
to identify, for each job j, a set of precedence constraints that must not be
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..
.

x = {a,−, ...,−}

x = {b,−, ...,−}

x = {a,−, ...,−,n}

. .
.

x = {a,−, ...,−,b}

..
.

x = {a,b,−, ...,−,n}

x = {a, c,−, ...,−,n}

x = {a,b,−, ...,−,n− 1,n}

x = {a,b,−, ...,−, c,n}

. .
.

..
.

Figure 1 Branching Scheme.

violated. During the exploration of the branching tree, any solution (node)
violating a precedence constraint in the list will be pruned.

4.2 Branching scheme
As described in Section 3, a solution to the addressed scheduling problem is
defined by the decision variables in x. Specifically, xk denotes the index of
the job in the k-th position of the sequence. To support the proposed branch-
and-bound algorithm, a branching three is defined according to the following
scheme. The tree starts from the root node, where no job has been sequenced.
Then, jobs are alternatively sequenced at the beginning and end of the schedule.
Hence, level 1 in the branching tree addresses the sequencing of the first job in
the sequence, level 2 the last job in the sequence, level 3 the second job, level 4
the second last, and so on, until all the jobs are sequenced, see Figure 1. The
depth-first strategy is used to explore the branch tree.

In comparison with a more traditional branching scheme, where the jobs
are sequenced starting from the first to the last position in the schedule, the
proposed scheme has the advantage of being less sensitive to the possible domi-
nance between groups of activities on the two machines, aiming at guaranteeing
more stable performance on different problem instances (Potts 1980; Gmys et al.
2020).

4.3 Evaluation of leaf nodes
Leaf nodes in the branching tree are associated with a complete schedule of the
n jobs and entail the calculation of the value-at-risk α (VaRα) of the makespan
of the schedule.

The makespan depends on the length of the critical path in the network
of activities but, when stochastic processing times are considered, more than a
single path has the probability of being critical (Dodin 1985). Hence, the esti-
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mation of the distribution of the makespan is intrinsically difficult to calculate
(Dodin 1996). The evaluations of these nodes ground on a Markovian Activ-
ity Network approach to calculate the distribution of the makespan, under the
hypothesis that processing times are modelled through phase-type distributions.

The addressed two-machine flow shop scheduling problem is represented with
an Activity on Arc (AoA) network based on an acyclic-directed graphG = (V,A)
with a set of nodes V and a set of arcs A. Each arc in A represents an activity,
while the nodes in V represent states, modelling the progress in the execution of
the activities. At a given time t, an activity can only be in one of the following
states (Kulkarni and Adlakha 1986):

• active: it is being executed and it is labeled with the name of the activity,
e.g., (a1)

• dormant: it has been completed, but there is an uncompleted activity
incident on the same destination node, and it is labelled with the name of
the activity with a star, e.g., (a∗1)

• idle: it is neither active nor dormant, and it is not listed in the label of
the state

a1

a2

b1 c1

b2 c2

(n− 1)1 n1

(n− 1)2 n2. . .

. . .

Figure 2 AoA activity network for a complete schedule.

Given the considered two-machine flow shop a complete sequencing of the
jobs {a, b, ..., n} can be modelled with the AoA network in Figure 2. Grounding
on this network, the set of states modelling the execution of the network can
be obtained. Starting from the state representing the processing of the first
job is processing on machine 1, i.e., a1, once activity a1 is completed, it will
transition to the state where both activities (first job on machine 2 and second
job on machine 1) are being processed, i.e., (a2, b1), and then it may transition
to one among two independent states: the first job completed on machine 2 and
a second job in process on machine 1 (a∗2, b1); or machine 1 has completed the
second job and has started the processing of the third job, while the first job
is still being processed on machine 2 (a2, c1). This scheme is pursued until the
absorbing state is reached, representing the complete processing of all the jobs on
the two machines. Under the hypothesis of exponentially distributed processing
times (Kulkarni and Adlakha 1986), the described scheme is a Continuous Time
Markov Chain (CTMC). Moreover, for the problem under consideration, the
structure of the state space and the associated transitions only depend on the
number of jobs. Thus, for a given number of jobs, a general structure of the
CTMC is derived and used in all the nodes without the need to generate it
multiple times, see Figure 3.
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a1
a2

b1

a∗
2

b1

a2

c1

a2

d1

...

a2

n1

a2

n∗
1

b2
c1

b∗2
c1

b2
d1

...

b2
n1

b2
n∗
1

...

...

...

(n − 2)2
(n − 1)1

(n − 2)∗2
(n − 1)1

(n − 2)2
n1

(n − 2)2
n∗
1

(n − 1)2
n1

(n − 1)∗2
n1

(n − 1)2
n∗
1

n2

Figure 3 States generation scheme.

Based on the states in Figure 3, the infinitesimal generator of the CTMC
representing the execution of the network of activities with phase-type distri-
butions of the processing times can be obtained using a Kronecker algebra ap-
proach (Angius et al. 2021). Thus, the makespan of the network of activities
is the time to absorption of the described CTMC, whose distribution can be
calculated according to:

F (t) = 1− βeTt1 (5)

where β is the initial probability vector, T denotes the transition matrix not
considering the absorbing state and 1 is an all-ones vector (Ross et al. 1996;
Urgo 2014).

The quantile of this distribution corresponding to the V aRα is obtained
through a bisection method to find the root of:

1− α = 1− βeζ∗T1 (6)

where β, T and 1 are the same as in Eq. (5), α is the considered risk level, and
ζ is the V aRα value to be estimated.

A lower and upper bound for the V aR are also provided to the bisection
method, to speed up the search for the root. The value of the VaR of the parent
node is used as the lower bound value. In fact, since the VaR of makespan is a
regular objective function and, since a child node is obtained from the parent by
inserting a new job in the schedule, then the VaR of the child node can only be
larger or equal to the VaR of its parent node (Pinedo 2016). The upper bound
value, on the contrary, is assigned the value of the current best solution. Thus,
if the bisection method fails to find the root, it must be larger than the current
best solution, and the node can be pruned.

4.4 Evaluation of nodes representing partial schedules
For the nodes representing a partial schedule, i.e., with only a subset of the jobs
sequenced, bounds have to be obtained for the considered objective function.

According to the branching scheme described in Section 4.2, s jobs have been
already sequenced, whereof u are sequenced in the first positions of the schedule
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and v in the last positions (with u+v = s), while the sequencing of the remaining
n − s jobs is not decided yet. For the s assigned jobs, an approach similar to
the one described in Section 4.3 is used to derive the initial and final segment
of the associated network of activities (Figure 4). On the contrary, for the jobs
to be sequenced, their processing times on the two machines are modelled by
two activities (k1 and k2) whose processing times are the sum of the processing
times of the operations belonging to unscheduled jobs. Due to this, possible
precedence relations between these operations are omitted. The resulting AoA
activity network is represented in Figure 4, and the same approach described in
Section 4.3 is used to generate the state space, the CTMC considering phase-
type distributed processing times and the estimation of the VaR.

a1

a2

b1

b2

(n− 1)1 n1

(n− 1)2 n2

k1

k2

. . .

. . .

. . .

. . .

Figure 4 AoA activity network for a partial schedule.

In this case, since the VaR of the makespan is a regular objective function
(see Section 4.3), its value can only remain the same or increase when a new job
is scheduled and, hence, additional precedence relations are considered. Thus,
the calculated VaR is a lower bound of the VaRs of all the nodes in the branch
departing from the considered node (Ma and Wong 2010). Nodes associated
with a partial schedule are pruned when the associated lower bound is larger
than or equal to the best-known solution.

5 Computational results
The proposed branch-and-bound algorithm has been coded in C++, taking
advantage of the BoB++ (Djerrah et al. 2006) and Eigen (Guennebaud et al.
2010) libraries. A set of experiments have been designed and executed to assess
the performance and the effectiveness of the branch-and-bound approach. All
the experiments have been carried out on a Windows 7 workstation with a 2.6
GHz Intel Xeon processor and 64 GB of RAM. A CPU time limit of 3600 seconds
has been set for all the experiments.

5.1 Generation of the test instances
A set of test instances has been generated considering n = 10 and 20 jobs.
The processing times of the jobs on the machines are modelled through phase-
type distributions. These distributions have been randomly generated using
the BuTools library(Horváth and Telek 2016) starting from the desired mean
and the number of phases (Butools 2018). Specifically, the value of the mean
is randomly sampled from three different uniform distributions with support
[0,20], [30,50] and [60,80]. The number of phases of the distributions is randomly
chosen between 1 and 4. The generation approach available in BuTools provides
a randomly generated phase-type distribution, with no control on higher-order
moments (e.g., variance and skewness).
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Multiple experiments have been carried out considering different risk levels
α (1%, 5%, 10% and 20%). A set of 20 test instances have been generated, for
each combination of the number of jobs n and risk level α, for a total of 160
instances.

5.2 Performance of the algorithm
The first aim of the experiments is to assess the performance of the proposed
approach in terms of the time needed to find the optimal solution, and how this
scales as the dimension of the problem increases.

Considering all the 160 instances, the results are reported in Table 3, showing
the performance of the branch-and-bound algorithm in terms of solution time
and the number of evaluated nodes. The average, minimum, maximum values
and standard deviation are reported for each combination of the number of jobs
and risk level.

With respect to the experiments carried out, the average solution time is
1029.5 s, ranging from a minimum of 1.4 s to the imposed time limit of 3600 s.
Considering the results in relation to the number of jobs in the test instances, we
see that, in the cases with 10 jobs, the algorithm can find the optimal solution
in an average time of 257.2 s, ranging from a minimum of 1.4 s to a maximum
of 1205.2 s. To find the optimal schedule, an average of 5785 nodes had to be
evaluated, with respect to the whole branching tree containing 6.2 ∗ 106 nodes,
which corresponds to 0.09% of them. When considering 20-job instances, the
solution time predictably increases, on average 1801.8 s are needed to solve an
instance to optimality, ranging from a minimum of 28.4 s to a maximum of
3600 s, and an average of 11844 nodes of the whole branching tree containing
4.2 ∗ 1018 need to be analysed.

Table 3 Results.

number of jobs risk level
solution time(s) evaluated nodes

mean min max SD mean min max SD

10

1 579.9 12.7 1205.2 436.3 12060 173 19967 6012

5 224.7 4.4 633.1 218.4 5295 81 16569 5393

10 105.7 1.4 400.0 119.3 2534 54 7954 2410

20 118.4 3.1 346.6 95.5 3523 90 7979 2503

ALL 257.2 1.4 1205.2 316.6 5785 54 19967 5737

20

1 3296.5 1449.7 3600.0 660.0 22483 154 67708 16365

5 1357.1 31.1 3600 1339.6 9287 115 50371 12200

10 1285.3 41.3 3469.6 1089.2 9003 135 45114 10792

20 1254.3 28.4 3321.8 1142.2 6605 95 29842 7266

ALL 1801.8 28.4 3600 1375.3 11844 95 67708 10090

ALL 1029.5 1.4 3600 1260.9 8814 54 67708 8896

For the subset of 20-job instances (36.7% of the whole set) that could not
be solved to optimal, the GAP between the current best solution and the lower
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bound was investigated, resulting in a value ranging from 0.0% to 2.1%, with
an average of 1.7%.

With the aim of further investigating the performance of the approach in
terms of solution time, we exploited additional investigations. Different plots
are presented to examine how various factors influence the performance of the
algorithm.

The number of jobs was clearly identified as one of the potentially impacting
factors, as shown in Figure 5, due to two main reasons. Firstly, the branching
tree will be larger as the number of jobs increases, entailing a potentially higher
number of nodes to be evaluated during the search. Furthermore, while se-
quencing a higher number of jobs, also the average time needed to evaluate a
node is expected to increase, due to the need of coping with larger infinitesimal
generator matrices in the evaluation of both partial and complete schedules. Fi-
nally, the plots in Figure 5 also show the presence of outliers. Thus, the specific
characteristics of the scheduling instances also have a possible impact on the
performance of the solution approach.

Another preliminary analysis was carried out to investigate the possible im-
pact of the risk level. The plots of the solution time and the number of evaluated
nodes, detailed in terms of the different risk levels, are presented in Figure 6. It
emerges that the risk level potentially impacts the solution time, with values of
α equal to 5% and 1% seemingly causing higher solution times and more nodes
to be evaluated. This impact seems evident for 10-job instances only. However,
it must be noticed that, while solving 20-job instances with a 1% risk level, most
(about 80%) reached the time limit and were not included in this analysis and
the related plots.
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Figure 6 Box plot of solution time and the number of evaluated nodes
according to the risk level considered (excluding experiments that reached the
time limit).

To support the observation emerged from the plots in Figures 5 and 6, an
ANOVA analysis has been operated. However, the hypothesis on normal residu-
als was not respected, even operating proper transformations on the data. Thus,
Mood’s median non-parametric tests have been used to analyse the results. The
results of the tests are reported in Table 4. The first two rows relates to the
investigation of the impact of the number of jobs and the risk level on the so-
lution time. The number of jobs factor yields a statistically significant result,
as anticipated, while the risk level factor does not. Thus, the number of jobs
clearly impacts the solution time (solution time vs number of jobs), but the de-
pendence on the risk level (solution time vs risk level), although the reasoning
on Figure 6 could not be demonstrated through the analysis of the data. An
additional set of tests has been done to investigate the impact of the number of
jobs on the number of nodes in the branching tree to be evaluated to reach the
optimal solution (evaluated nodes vs number of jobs). The results of the test did
not provide evidence of this dependency. Thus, an additional test was operated
to check the possible dependency on time to evaluate a single node that, on
the contrary, provided statistical significance. Thus, the number of jobs clearly
impacts the solution time, and this is due to the higher computational effort
required to estimate the distribution of the makespan with a higher number of
jobs, requiring a larger infinitesimal generator matrix.

A similar analysis was carried out to investigate the dependency on the
specific risk level. Still, the test related to the number of nodes (evaluated
nodes vs risk level) and the time to solve a node (evaluation time per node vs
risk level) did not provide statistical evidence. Nevertheless, as the diagrams
in Figure 6 provided different evidence, it has been hypothesised that the lack
of statistical significance could be due to the small number of 20-job instances
since most of the related experiments reached the time limit and were excluded
from the analysis, especially with a risk level equal to 1%. Thus, tests were
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carried out on 10-job instances only (last two rows in Table 4), resulting in the
evidence that, at least within this subset of experiments, the dependency on the
risk level was clearly significant for both the solution time and the number of
evaluated nodes.

Thus, the experiments demonstrated that the time to solve an instance de-
pends on the number of jobs to be scheduled. This was clearly an expected
result, but the analysis confirmed that the main motivation for the longer solu-
tion time is due to the time needed to estimate the distribution of the makespan
for a larger Markov chain. On the contrary, the effectiveness of the proposed
initial solution and bounds does not change with the number of jobs, as the
number of evaluated nodes in the search does not depend on this. In contrast,
the selected risk level impacts the solution time. This was evident for 10 job
instances only. Nevertheless, if the experiments had been carried out without
a time limit, this dependence could probably have also emerged for 20-job in-
stances. This seems to be attributed to the higher number of nodes that need
to be evaluated, especially for a risk level equal to 1%. This is probably be-
cause, when the distributions of the different schedules become very close, as is
expected in the right-tail, the algorithm requires more nodes to be evaluated to
find the optimal solution.

Table 4 Nonparametric pairwise comparison tests results.

Mood’s Median Test DF χ2 p-value

solution time vs number of jobs 1 59.64 <0.0001

solution time vs risk level 3 4.77 0.19

evaluated nodes vs number of jobs 1 0.34 0.56

evaluated nodes vs risk level 3 11.09 0.011

evaluation time per node vs number of jobs 1 65.01 <0.0001

evaluation time per node vs risk level 3 1.98 0.58

solution time vs risk level (10-job instances) 3 19.60 <0.0001

evaluated nodes vs risk level (10-job instances) 3 22.00 <0.0001

An additional investigation has been executed to assess the efficiency of the
initial solution and the dominance rule. Concerning the initial solution and
bound, while each instance was solved, the number of times the best solution
was updated, with respect to the initial one, has been collected. Figure 7(a)
shows that the number of times this solution is updated is always less than 10.
Thus the initial solution based on the heuristic Talwar rule speeds up the branch-
and-bound algorithm in the search for the optimal solution. Nevertheless, the
contribution of the branch-and-bound algorithm is also relevant, in fact, it can
improve the initial solution of 8.1% on average, with a minimum and maximum
improvement of the value of the objective function equal to 0.0% and 12.3%
respectively.

Referring to the effectiveness of the proposed dominance rule (Section 4.1),
listing precedence constraints causing dominance among the solutions, Fig-
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ure 7(b) shows the fraction of nodes pruned grounding the dominance rule with
respect to the overall number of evaluated nodes. In the experiments carried
out, 15.0% of the nodes, on average, are pruned according to the dominance rule
during the search, with a minimum and maximum fraction of 1.2% and 59.7%
respectively, proving the effectiveness of the dominance rule.

Figure 7 Effectiveness of the proposed initial solution (a) and dominance rule
(b).

As mentioned in the preliminary analysis of the results, while solving 20-job
instances, the branch-and-bound algorithm could not find the optimal solution
within the given time limit for about 80% of the experiments. An additional
investigation has been carried out to assess the quality of the incumbent solution
obtained, although not optimal. As the branch-and-bound algorithm is stopped,
the list of evaluated nodes in the branching tree is analysed to estimate a global
lower bound for the objective function (LBG). The difference between the initial
solution value S0 and LBG provides an estimation of the gap to be filled to reach
optimality. An indicator ∆% is defined in Eq. 7 to evaluate the effectiveness
of the branch-and-bound algorithm to improve the initial solution S0 and to
estimate the gap to the optimal solution.

∆% =
S0 −BBinc
S0 − LBG

(7)

Table 5 Estimated gap for 30- and 50-job instances.

job number ∆%

min max mean

30 22.1 87.6 46.3

50 19.6 78.2 45.4

The results in Table 5 shows that the proposed branch-and-bound algo-
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rithm can improve the initial solution by 45.5% towards the global lower bound,
demonstrating the effectiveness of the proposed approach even on larger in-
stances where the capability to complete the optimisation cannot be guaranteed.

5.3 Comparison with alternative approaches
To evaluate the benefits of a scheduling approach based on Markovian Activity
Networks and the minimization of the value-at-risk, alternative robust schedul-
ing approaches have been implemented and compared both from the accuracy
and effectiveness points of view. Specifically, scheduling approaches based on
expectation-variance analysis (Sarin et al. 2010) and maximum regret minimiza-
tion (Kouvelis et al. 2000) have been considered for the comparison.

Approaches based on the expectation-variance analysis use a finite mixture
model to approximate a generally distributed processing time in terms of a
convex combination of normal distributions, providing, in many cases, very
good results (Sarin et al. 2010).

The mean and variance of the makespan are then computed accordingly.
In a two-machine flow shop scheduling problem, many paths exist, starting
from the first sequenced activity on the first machine to the last one on the
second machine. All these paths share at least a couple of activities. Thus the
distributions of their completion times are correlated. Thus, the computation of
the mean and variance of the makespan is operated through an approximation
based on the Clark equation (Clark 1961).

Due to this approximation, a first comparison, focused on accuracy, is oper-
ated between the proposed Markovian Activity Network (MAN) approach and
the one based on the expectation-variance (EV) one described above, with the
aim at estimating the accuracy in the calculation of the mean and variance of
the makespan. A representative 10-job instance (see Appendix A) is chosen
among the ones described in Section 5.1. Grounding on this instance, ten ran-
domly chosen schedules are defined. Thus the mean and variance value of the
makespan is calculated using the MAN and EV approaches. The exact value of
the mean and variance is estimated using a Monte Carlo simulation approach
with 107 samples. The relative deviations of the two approaches from the exact
value are presented in Table 6, showing that the EV approach can entail a sig-
nificant error both in the estimation of the mean and variance of the makespan.
In contrast, the MAN approach demonstrates a higher accuracy.
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Table 6 Accuracy in the estimation of the mean and variance of the
makespan.

relative error

expectation-variance analysis Markovian activity network

mean avg 5.6% 0.03%

min 4.9% 0.02%

max 7.5% 0.04%

variance avg 5.3% 0.07%

min 4.7% 0.05%

max 6.9% 0.08%

A different type of analysis has been carried out to compare the effectiveness
of different objective functions to obtain a robust schedule, i.e., value-at-risk,
expectation-variance, and maximum regret.

Starting from the 10-job representative instance described above, differ-
ent schedules are defined, looking for those showing different behaviours in
terms of VaR and mean-variance. Among these, two different schedules x1 =
{1, 10, 7, 4, 2, 3, 6, 9, 8, 5} and x2 = {10, 1, 7, 4, 2, 3, 6, 5, 8, 9} are observed with
the difference in terms of mean and variance is 0.03% and 0.6% respectively.
In comparison, the difference in terms of V aR10% is 2.1% (Figure 8). Hence,
the two schedules would be very similar for the approach based on expectation-
variance while, if the minimisation of the VaR is operated, one of them is dom-
inating the other one. This difference is mostly because the density function of
the distributions of the makespan for the two schedules have different tails on
the right side (Figure 8). Thus, the use of risk measures like the value-at-risk
provides the capability of considering the right tail of the distribution of the
makespan to mitigate the impact of worst cases, in line with Sarin et al. (2014).

The comparison with an approach minimising the maximum regret also refers
to this representative instance and grounds on three measures, i.e., the maxi-
mum regret, the value-at-risk, and the maximum possible value of the makespan.
Since the support of the distribution is not bounded, the 0.01% and 99.99%
quantiles are considered to obtain the latter. For this comparison, we take
into consideration two alternative schedules: xV aR = {1, 10, 7, 4, 2, 3, 6, 9, 8, 5}
is the optimal schedule minimising the VaR of the makespan; xmaxRegr =
{1, 10, 2, 6, 8, 5, 3, 7, 9, 4} is the optimal schedule minimising the maximum regret
of the makespan.
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Figure 8 Probability density function of the makespan for x1 (black) and x2

(blue) and respective values for the V aR10%.

The results of this comparison are reported in Table 7. They show that both
the minimisation of the maximum regret and the value-at-risk provide reason-
ably robust schedules. Nevertheless, the approach based on the minimisation
of the VaR, besides minimising this value, also guarantees significantly better
protection against the worst case, i.e., the maximum possible makespan (12%
better than the maximum regret approach).

Table 7 Comparison between the schedules minimizing the VaR and
maximum regret.

VaR max regret max value

xV aR 638.4 124.4 1541.94

xmaxRegr 708.9 112.8 1722.33

∆% +11.0% -10.2% +12%

Hence, to better investigate the comparison between the maximum regret
and value-at-risk minimisation approach, a complete analysis has been operated
over all the problem instances.

The minimisation of the maximum regret grounds on a simplified model of
the processing times of the jobs, only considering the extreme values (minimum
and maximum). Thus, it is possible to solve 10-job instances in less than 5 s.
However, for more than 90% of the instances with 20 jobs, it was impossible to
get the optimal schedule in less than 30 minutes. This aligns with the results
in Kouvelis et al. (2000), providing results for instances with a maximum of 15
jobs. Thus, considering the whole picture, the proposed VaR approach can solve
the generated instances in a reasonable time.
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For each instance, the optimal schedule minimising the maximum regret of
the makespan (smaxRegr) is obtained and compared with the schedule obtained
through the branch-and-bound approach (sV aR), minimising the VaR. Based
on the experiments, the maximum regret value of sV aR is about 9.0% larger
than that of smaxRegr on average. In contrast, the VaR of sV aR is on average
7.4% smaller than that of smaxRegr, demonstrating that the schedule solution
obtained from the proposed VaR approach is performing worse for the maximum
regret criterion.

Besides these expected absolute results, the probability for schedule V aR to
incur in a maximum value of the makespan higher than smaxRegr is also calcu-
lated. Thus, given maxV aR the maximum possible value of the makespan for
sV aR and maxmaxRegr the maximum possible value for smaxRegr, the proba-
bility of having maxV aR ≥ maxmaxRegr has been estimated, grounding on the
distribution of the makespan for the two schedules. The results of this assess-
ment are that

P (maxV aR ≥ maxmaxRegr) ≈ 0 (8)

which means that the probability for the schedule obtained with the proposed
approach to cause a makespan larger than the one obtained with the minimax
regret approach is negligible. Thus, the VaR approach can provide a reasonable
and less cautious solution to balance the risk associated with extreme scenarios.
The detailed results of the experiments are not reported since, for almost all
instances, the probability defined in Eq. 8 is lower than 0.01%.

6 Managerial insights
Planning and scheduling in real manufacturing environments entail the need to
cope with multiple sources of uncertainty whereof processing times are the most
significant (see Section 1). Decision-makers are requested to balance the pursuit
of production performances and, at the same time, mitigate the risks associated
with uncertainty. The proposed scheduling approach supports this trade-off by
devising robust schedules to minimise the value-at-risk of the makespan, i.e., a
well-established measure of risk.

This requires the estimation of the distribution of the objective function that,
especially together with the need to cope with generally-distributed processing
times, is a computation-critical problem. The proposed approach provides a
higher accuracy in estimating the selected risk measures, compared with other
methods that may be simpler to implement and faster to run, but could lead
to significant errors and non-optimal schedule decisions (Section 5.3). Thus it
provides managers with reliable information to ground their decisions. Pursuing
accuracy clearly entails a higher computational load, constituting a significant
limitation while coping with large scheduling problems.

Nevertheless, from our point of view, this does not significantly hinder the
benefits of using the proposed approach. In fact, in real manufacturing plants,
small-/medium-size problems are extremely common. Furthermore, scheduling
on long time horizons is often operated at an aggregate level (Kusiak 1989;
Buxey 1989; Liu and Urgo 2022), i.e., considering the aggregation of groups of
operations into a macro activity. Thus, providing the possibility to work with
longer scheduling horizons while being limited in the number of jobs.
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7 Conclusions
In this paper, a branch-and-bound algorithm has been proposed and demon-
strated for the two-machine stochastic flow shop scheduling problem to minimise
the value-at-risk (VaR) of the makespan. The aim is to find a robust schedule
capable of protecting against the occurrence of unfavourable events using the
VaR as a risk measure guiding the search for robustness. A Markovian Activity
Network (MAN) approach has been adopted to estimate the distribution of the
makespan, modelling the processing of the jobs through a Markov chain, and
exploiting phase type distributions to cope with realistic distributions in a wide
range of application areas (e.g., industrial processes).

Further developments will focus on improving computation performance ad-
dressing the following aspects:

1. taking advantage of a modular definition of the infinitesimal generator
matrix (Angius et al. 2021) to reuse the estimation operated on partial
schedules within the exploration of the same branching tree.

2. exploit alternative approaches to operate the exponential matrix and de-
rive the distribution of the makespan (e.g., Krylov (Sidje 1998), CAM
(Al-Mohy and Higham 2011)).

3. improve the root finding approach to decrease the number of iterations
when estimating the Value-at-Risk of the distribution of the makespan.

4. develop the integration of heuristic algorithms to cope with larger in-
stances. Examples are the Iterated Greedy(IG) heuristic (Ruiz and Stüt-
zle 2007), which has been demonstrated to be effective in the deterministic
flow shop scheduling problem.

Furthermore, the performance of the proposed approach also demonstrated
dependency on the specific scheduling instance to be solved. This dependence
is well known in the deterministic version of the two-machine flow shop schedul-
ing problem and it grounds on the possible presence of dominance among the
distributions of the processing times on the two machines (Emmons and Vairak-
tarakis 2012). These dominance criteria do not have a stochastic version; thus,
this area should be further investigated to support improving the performance
of solution approaches.
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Appendix A
For the representative 10-job instance in Section 5.3, the phase-type processing
time distributions of the jobs on each machine are reported in Table 8. Each
phase-type distribution is denoted by an initial vector β and a matrix T (Neuts
1994).
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Table 8 Distributions of the processing times for the instance in Section 5.3.

job j distribution
pj1

distribution
pj2

1
β [1 0] [1]

T
[−3.655 3.655

6.394 −7.77

]
[-0.018]

2
β [1] [1 0]

T [-0.13]
[−0.053 0.044

0 −0.039

]
3

β [1] [1 0]

T [-0.084]
[−0.03 0.012

0.032 −0.032

]
4

β [1] [1 0]

T [-0.14]
[−0.062 0.024

0.02 −0.02

]
5

β [1 0] [1]

T
[−0.042 0.018

0 −0.011

]
[-0.21]

6
β [1,0] [1]

T
[−0.035 0.009

0.021 −0.021

]
[-0.016]

7
β [1] [1 0]

T [-0.166]
[−0.185 0.185

0.485 −0.572

]
8

β [1 0 0 0] [1]

T


−0.128 0.044 0.012 0.03

0.061 −0.061 0 0

0.051 0 −0.051 0

0 0 0.088 −0.088

 [-0.081]

9
β [1] [1 0 0 0]

T [-0.021]


−0.854 0.386 0.076 0.164

0 −0.37 0 0.37

0 0.277 −0.277 0

0.35 0 0 −0.35


10

β [1] [1 0 0 0]

T [-0.24]


−0.42 0.241 0 0.178

0 −0.896 0.294 0.204

0 0 −0.097 0

0 0.055 0 −0.055


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